Abstract

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high intratumoral heterogeneity. Recent studies revealed that TNBC patients might comprise cells with distinct molecular subtypes. In addition, gene regulatory networks (GRNs) constructed based on single-cell RNA sequencing (scRNA-seq) data have demonstrated the significance for decoding the key regulators. We performed a comprehensive analysis of the GRNs for the intrinsic subtypes of TNBC patients using scRNA-seq. The copy number variations (CNVs) were inferred from scRNA-seq data and identified 545 malignant cells. The subtypes of the malignant cells were assigned based on the PAM50 model. The cell-cell communication analysis revealed that the macrophage plays a dominant role in the tumor microenvironment. Next, the GRN for each subtype was constructed through integrating gene co-expression and enrichment of transcription-binding motifs. Then, we identified the critical genes based on the centrality metrics of genes. Importantly, the critical gene ETV6 was ubiquitously upregulated in all subtypes, but it exerted diverse roles in each subtype through regulating different target genes. In conclusion, the construction of GRNs based on scRNA-seq data could help us to dissect the intratumoral heterogeneity and identify the critical genes of TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.