Abstract

Superior bifunctional electrocatalysts with ultra-high stability and excellent efficiency are crucial to boost the oxygen evolution reaction (OER) and the hydrogen evolution reduction (HER) in the overall water splitting (OWS) for the sustainable production of clean fuels. Herein, comprehensive density functional theory (DFT) computations were performed to explore the potential of several single transition metal (TM) atoms anchored on various S-doped black phosphorenes (TM/Snx-BP) for bifunctional OWS electrocatalysis. The results revealed that these candidates display good stability, excellent electrical conductivity, and diverse spin moments. Furthermore, the Rh/S12-BP catalyst was identified as an eligible bifunctional catalyst for OWS process due to the low overpotentials for OER (0.43 V) and HER (0.02 V), in which Rh and its adjacent P atoms were identified as the active sites. Based on the computed Gibbs free energies of OH*, O*, OOH* and H*, the corresponding volcano plots for OER and HER were established. Interestingly, the spin moments and the charge distribution of the active sites determine the catalytic trends of OER and HER. Our findings not only propose a promising bifunctional catalyst for OWS, but also widen the potential application of BP in electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.