Abstract

Catalyst doped with a single-atom noble metal displays distinctive catalytic behavior from the bulk counterparts, with tunable electronic structures and spatial versatilities, which excels in today’s heterogeneous catalysis. To deposit noble metals in a single atomic level requires a restricted chemical environment and precise thermodynamic control. Electroplating methods are commercially used to deposit uniform and conformal metal thin films on different hardware surfaces. Yet the atomic level electroplating has never been achieved. Herein we demonstrate a voltage gauged electrochemical deposition method to synthesize single-atom Pt, Au, and Pd on MoS2 and other two-dimensional (2D) materials. The surface atomic doping level for Pt, Au, and Pd can reach 1.1, 7.0, and 14%, respectively, and the doping sites are precisely positioned at Mo- and S-vacancies. The monodispersed noble atoms show enhanced hydrogen evolution activity and saturated CO tolerance, as explained by density functional theory calculatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.