Abstract

Selective hydrogenation is one of the most important reactions in fine chemical industry, and the activation of H2 is the key step for hydrogenation. Catalysts play a critical role in selective hydrogenation, and some single-atom catalysts (SACs) are highly capable of activating H2 in selective hydrogenation by virtue of the maximized atom utilization and the highly uniform active sites. Therefore, more research efforts are needed for the rational design of SACs with superior H2 -activating capabilities. Herein, the research progress on H2 activation in typical hydrogenation systems (such as alkyne hydrogenation, hydroformylation, hydrodechlorination, hydrodeoxygenation, nitroaromatics hydrogenation, and polycyclic aromatics hydrogenation) is reviewed, the mechanismsof SACs for H2 activation are summarized, and the structural regulation strategiesfor SACs are proposed to promote H2 activation and provide schemes for the design of high-selectivity hydrogenation catalysts from the atomic scale. At the end of this review, an outlook on the opportunities and challenges for SACs to be developed for selective hydrogenation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.