Abstract

The electrocatalytical process is the most efficient way to produce ammonia (NH3) under ambient conditions, but developing a highly efficient and low-cost metal-free electrocatalysts remains a major scientific challenge. Hence, single atom and double boron (B) atoms doped 2D graphene-like carbon nitride (C2N–h2D) electrocatalysts have been designed (B@C2N and B2@C2N), and the efficiency of N2 reduction reaction (NRR) is examined by density functional theory calculation. The results show that the single and double B atoms can both be strongly embedded in natural nanoporous C2N with superior catalytic activity for N2 activation. The reaction mechanisms of NRR on the B@C2N and B2@C2N are both following an enzymatic pathway, and B2@C2N is a more efficient electrocatalyst with extremely low overpotential of 0.19 eV comparing to B@C2N (0.29 eV). In the low energy region, the hydrogenation of N2 is thermodynamically more favorable than the hydrogen production, thereby improving the selectivity for NRR. Based on these results, a new double-atom strategy may help guiding the experimental synthesis of highly efficient NRR electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.