Abstract

Actuators that are powered, imaged, and controlled by Magnetic Resonance (MR) scanners offer the potential of inexpensively providing wireless control of MR-guided robots. Similar to traditional electric motors, the MR scanner acts as the stator and generates propulsive torques on an actuator rotor containing one or more ferrous particles. The MR scanner can control three orthogonal gradient fields. Prior work demonstrated control of a single actuator rotor. This paper proposes and demonstrates independent, simultaneous control of n rotors. The controller relies on inhomogeneity between rotors, such as ensuring no rotor axes are parallel. This paper provides easily-implemented velocity and position controllers with global asymptotic convergence, and optimization techniques for implementation. Code for simulations and control laws is available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.