Abstract
Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation, but computational cost and inconsistent reaction coverage are still obstacles to exploring deep reaction networks. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straightforward modifications of the reaction enumeration, geometry initialization and transition state convergence algorithms that are common to many prediction methodologies. These components are implemented in the context of yet another reaction program (YARP), our reaction prediction package with which we report reaction discovery benchmarks for organic single-step reactions, thermal degradation of a γ-ketohydroperoxide, and competing ring-closures in a large organic molecule. Compared with recent benchmarks, YARP (re)discovers both established and unreported reaction pathways and products while simultaneously reducing the cost of reaction characterization by nearly 100-fold and increasing convergence of transition states. This combination of ultra-low cost and high reaction coverage creates opportunities to explore the reactivity of larger systems and more complex reaction networks for applications such as chemical degradation, where computational cost is a bottleneck.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.