Abstract

Doping and exfoliation are effective strategies to improve the photocatalytic activity of bulk graphitic carbon nitride (g-C3N4). Therefore, it can be inferred that engineering element-doping and exfoliation into g-C3N4 would further enhance the photocatalytic performance. Herein, we demonstrated a KOH-assisted hydrothermal-reformed melamine strategy for achieving the simultaneous K-doping and exfoliation of g-C3N4. The as-synthesized K-doped g-C3N4 ultrathin nanosheets displayed much enhanced photocatalytic hydrogen evolution rate (HER) of about 13.1 times higher than that of the bulk g-C3N4 under visible-light irradiation, achieving an apparent quantum efficiency of 6.98% at 420 nm. The improved photocatalytic HER can be attributed to the high surface area offering numerous photocatalytic active sites, enlarged conductive band edge optimizing photoreduction potential, and K-doping promoting charge generation and separation as well as the long life-time of photogenerated carriers. This work would provide a promising way to integrate co-doping and exfoliation into new gC3N4based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.