Abstract
In this study, a ZnxCd1-xS solid solution was successfully synthesized using a hydrothermal method. MoS2 serving as a co-catalyst for hydrogen evolution was also prepared through a one-pot hydrothermal method. The structures, morphology, chemical states, and optical properties were characterized using powder X-ray diffraction, scanning electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflection spectroscopy. Visible-light-driven photocatalytic experiments were conducted to simultaneously achieve hydrogen production and amoxicillin antibiotic wastewater degradation. The results indicated 8%MoS2/ZnxCd1-xS achieves the best photocatalytic performance. The ZnxCd1-xS samples illustrated a superior performance to that of CdS, which can be attributed to a thermodynamic improvement. Based on the results of PL and TRPL analyses, the enhancement of the hydrogen production mechanisms can be ascribed to the prolonged separation process of the photocarriers. Furthermore, the degradation results were analyzed using the HPLC method and the possible degradation pathways were determined through the HPLC-MS techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.