Abstract

Mixed panel count data represent a common complex data structure in longitudinal survey studies. A major challenge in analyzing such data is variable selection and estimation while efficiently incorporating both the panel count and panel binary data components. Analyses in the medical literature have often ignored the panel binary component and treated it as missing with the unknown panel counts, while obviously such a simplification does not effectively utilize the original data information. In this research, we put forward a penalized likelihood variable selection and estimation procedure under the proportional mean model. A computationally efficient EM algorithm is developed that ensures sparse estimation for variable selection, and the resulting estimator is shown to have the desirable oracle property. Simulation studies assessed and confirmed the good finite-sample properties of the proposed method, and the method is applied to analyze a motivating dataset from the Health and Retirement Study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.