Abstract

Simultaneous synthesis and assembly of Au, Pt, and Pd nanoclusters (NCs; with sizes ≤3 nm) into mesoscale structures with defined boundaries are achieved using their metal halides, cetyltrimethylammonium bromide (CTAB), and thiourea (Tu). Geometric shape, hierarchical organization, and packing density of resultant assemblages vary depending on metal precursors and CTAB concentration. For example, rod- or tube-like assemblages are formed from Au NCs, giant vesicles and/or dandelion-like assemblages from Pt NCs, and rhombic/hexagonal platelet assemblages from PdS NCs and Pd NCs. These assemblages inherit pristine shapes from their respective variable micelles of CTA(+)-metal halide complexes. Owing to dynamical nature, the assembled NCs demonstrate various structural reforming behaviors. The metal halides, which serve as counterions of positively charged surfactant heads, screen the electrostatic repulsion among the surfactant molecules as well as the micelles, providing the driving force for the formation of soft templates. Meanwhile, the formation of NCs can be addressed from the perspective of nucleation and growth kinetics. The unique protecting role of surface sulfur, controlled release of S(2-) from Tu, and formation of NCs of metal sulfides as intermediates together lead to a relatively low rate-ratio of growth to nucleation and thus limit the size of product NCs. Our preliminary study also indicates that the assembled noble metal NCs have high catalytic activity and recyclability. In this regard, the present approach not only provides a facile means to construct NC-based metal catalysts but serves also as a simple way to visualize interaction and evolution of micelles of CTA(+)-metal halide complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.