Abstract

We report on an implementation of coherence revival-based heterodyne swept source optical coherence tomography that is capable of simultaneously imaging the anterior and posterior eye. A polarization-encoded sample arm was used to efficiently focus orthogonal polarizations on the anterior segment and retina. Depth encoding was achieved using coherence revival, which allows for multiple depths within a sample to be simultaneously imaged and frequency encoded by carefully controlling the optical pathlength of each sample path. This design is a significant step toward whole-eye optical coherence tomography (OCT), which would enable customized ray-traced modeling of patient eyes to improve refractive surgical interventions and eliminate optical artifacts in retinal OCT diagnostics. We demonstrated the feasibility of this system for in vivo imaging by simultaneously acquiring images of the anterior segments and retinas in healthy human volunteers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.