Abstract

A novel denitrifying phosphorus-accumulating bacterium was isolated from contaminated sediment and identified as Pseudomonas stutzeri ADP-19. Bio-safety assays demonstrated that the strain was γ-hemolytic, antibiotic-sensitive, and had no decarboxylase activity. It removed 96.5% of NH4+-N and 73.3% of PO43−-P (at initial concentrations of 100 mg/L and 20 mg/L) under aerobic conditions, and the corresponding maximum removal rates were 3.44 and 0.41 mg/L/h, respectively. Nitrogen removal was achieved through a fully nitrification-denitrification pathway [NH4+-N → NH2OH → NO2−-N → NO3−-N → NO2−-N → (NxO) → N2], while phosphorus removal mainly depended on the phosphate assimilation and the excessive poly-P accumulation. Strain ADP-19 also showed a strong salt tolerance within a wide salinity range of 0–5%. The enhanced biological treatment of anaerobic-digested wastewater in a sequencing batch reactor (SBR) indicated that the strain improved the microbial diversity of the activated sludge and significantly enhanced the nitrogen and phosphorus removal efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.