Abstract

The present work discusses the startup and operation of different biotrickling filters during the simultaneous removal of NH3, H2S, and ethyl mercaptan (EM) for odor control, focusing on (a) the impact of pH control in the stability of the nitrification processes during reactor startup and (b) the crossed effects among selected pollutants and their by-products. Two biotrickling filters were packed with poplar wood chips (R1 and R2A), while a third reactor was packed with polyurethane foam (R2B). R2A and R2B presented a pH control system, whereas R1 did not. Loads of 2–10 g N–NH3 m−3 h−1, 5–16 g S–H2S m−3 h−1, and 1–6 g EM m−3 h−1 were supplied to the bioreactors. The presence of a pH control loop in R2A and R2B proved to be crucial to avoid long startup periods and bioreactors malfunctioning due to biological activity inhibition. In addition, the impact of the presence of different concentrations of a series of N species (NH4+, NO2−, and NO3−) and S species (SO42− and S2−) on the performance of the two biotrickling filters was studied by increasing their load to the reactors. Sulfide oxidation proved to be the most resilient process, since it was not affected in any of the experiments, while nitrification and EM removal were severely affected. In particular, the latter was affected by SO42− and NO2−, while nitrification was significantly affected by NH4+. The biotrickling filter packed with polyurethane foam was more sensitive to crossed effects than the biotrickling filter packed with poplar wood chips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.