Abstract

Engineering complex tissues is important but difficult to achieve in tissue regeneration. Osteochondral tissue engineering for the repair of osteochondral defect, involving simultaneous regeneration of bone and cartilage, has attracted considerable attention and also serves as an optimal model system for developing effective strategies aimed at regenerating complex tissues. In the present study, we formulated a bilayered gene-activated osteochondral scaffold consisting of plasmid TGF-β1-activated chitosan-gelatin scaffold for chondrogenic layer and plasmid BMP-2-activated hydroxyapatite/chitosan-gelatin scaffold for osteogenic layer. Mesenchymal stem cells seeded in each layer of the bilayered gene- activated osteochondral scaffold showed significant cell proliferation, high expression of TGF-β1 protein and BMP-2 protein respectively. The results showed that spatially controlled and localized gene delivery system in the bilayered integrated scaffolds could induce the mesenchymal stem cells in different layers to differentiate into chondrocytes and osteoblasts in vitro, respectively, and simultaneously support the articular cartilage and subchondral bone regeneration in the rabbit knee ostochondral defect model. This study gives the evidence that multi-tissue regeneration through the combination of biomimetic and multi-phasic scaffold design, spatially controlled and localized gene delivery system and multi-lineage differentiation of a single stem cell population represents a promising strategy for facilitating the development of complex tissue or organ systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.