Abstract

Incorporating radar detection and frequency measurement functions within a single system is highly desirable in modern RF applications. In this article, a microwave photonic system is proposed and demonstrated to simultaneously realize broadband radar detection and frequency measurement. By sharing a light with ± 2nd-order linear frequency-modulated (LFM) sidebands in a polarization-division-multiplexing manner, radar detection and frequency measurement functions can be realized simultaneously. In the transmitter, the shared light is used to generate a radar signal that has a quadrupled bandwidth compared with the input electrical LFM signal. In the receiver, the shared light is applied as the reference to perform photonic de-chirping of the radar echo and to scan the frequency of the signal under test (SUT) along two orthogonal polarization directions. In the experiment, a 4.5–6.5 GHz LFM signal is used to generate the shared light source, based on which radar detection (bandwidth: 18–26 GHz) with a range resolution as high as 2.06 cm, and frequency measurement (measurement range: 28–36 GHz) with a scanning rate of 0.8 GHz/μs and a resolution of 37.6 MHz are achieved. In addition, the reconfigurablilty of the frequency measurement range, and its capability for measuring the multi-tone and wideband signals are also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.