Abstract

We propose an arbitrary controlled-unitary (CU) gate and a simultaneous quantum transmission and teleportation (SQTTP) scheme. The proposed CU gate utilizes photons with cross-Kerr nonlinearities (XKNLs), coherent superposition states (CSSs) and P-homodyne detectors and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate It is almost deterministic and feasible with current technology when strong CSSs and weak XKNLs are employed. Compared with the existing multi-qubit or controlled gates, which utilize XKNLs, coherent states, and X-homodyne detectors, the proposed CU gate can increase the feasibility of experimental realization, and enhance the robustness against the decoherence effect. Based on the CU gate, we present a SQTTP scheme that simultaneously transmits and teleports two unknown states of photons between two parties (Alice and Bob) using path-polarization intra-particle hybrid entanglement (IRHE) by transferring only a single photon. Consequently, it is possible to experimentally implement SQTTP with a certain success probability using the proposed CU gate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.