Abstract

Metabolites serve as vital biomarkers, reflecting physiological and pathological states and offering insights into disease progression and early detection. This study introduces an advanced analytical technique integrating label-free Surface-Enhanced Raman Spectroscopy (SERS) with deep learning, and leverages SHAP (SHapley Additive exPlanations) to provide a visual interpretative analysis of the predictive rationale of the deep learning model, facilitating simultaneous detection and quantitative analysis of multiple metabolites. Monolayer silver nanoparticle SERS substrates were fabricated via a triple-phase interfacial self-assembly method, which captured complex spectral information of target metabolites in mixed solutions. A custom-built deep neural network model with multi-channel feature extraction was employed to predict the concentrations of uric acid (R2 = 0.976), xanthine (R2 = 0.971), hypoxanthine (R2 = 0.977), and creatinine (R2 = 0.940). The method’s scalability was validated as the performance remained consistent with an increasing number of simultaneous targets. This approach offers a sensitive, cost-effective, and rapid alternative for metabolite analysis, with significant implications for clinical diagnostics and personalized medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.