Abstract

Simultaneous production of commercial enzymes using agro-industrial residues by statistical approach is an important perspective in an industrial point of view. Despite the advantages of statistical methods optimization, the report on simultaneous production of pectinase and amylases are limited. The accumulation of agro-industrial residues causes serious environmental problems; however, citrus peel can be the important substrate for various enzymes production, including pectinase. These enzymes involving saccharification process and act as clarifying agent. In this study, orange peel and banana peel mixture were used as the suitable substrate for pectinase and amylase production using Bacillus pumilus in solid-state culture. The process parameters were optimized for simultaneous production of enzymes by a traditional-one-variable-at-a-time approach, a two level full factorial design, central composite design and response surface methodology. Among the selected variables, moisture content of the medium, pH and mineral supplement significantly influenced pectinase and amylase production. Pectinase production increased over 3-fold, whereas, 2-fold increase on amylase production was achieved after optimization by statistical approach. The purified pectinase exhibited maximal activity at pH8.0, temperature of 60 °C and the molecular weight was 60 kDa. The purified amylase was highly active at pH8.0, at 50 °C and the molecular weight was 37 kDa. The enzyme showed activity on fruit pulp in increasing clarity in orange and carrot juice and the saccharification of starch. Orange peel and banana peel mixture was effective as a solid medium for the simultaneous production of pectinase and amylase by Bacillus pumilus. Also, our statistical approach to optimize the medium components to yield more pectinase and amylase was fruitful and these enzymes showed appreciable results suitable for various applications. © 2018 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.