Abstract
In most medical and environmental applications of biosensors, only single analytes are determined. However, the monitoring of several analytes is obviously preferable in order to gather more information about the sample under analysis. In line with this, different technologies are being developed to obtain multi-analyte sensors. In this paper, an analytical method for the simultaneous determination of three different contaminants—atrazine, isoproturon, and estrone—in natural waters by using an optical immunosensor prototype, the so-called “RIver ANAlyser” (RIANA), is described. RIANA is based on a rapid solid-phase fluoroimmunoassay that takes place at an optical transducer chip. The transducer surface is chemically modified with three analytes derivatives placed in different discrete locations. The sensor surface can be regenerated thus allowing the performance of several measurements with the same transducer. Each test cycle, including one regeneration step, is accomplished in 15 min. Detection limits achieved were 0.155, 0.046, and 0.084 μg/l, for atrazine, isoproturon, and estrone, respectively. Satisfactory repetition, with relative standard deviations between 1.06 and 6.98%, was obtained. Excluding a minor non-specifical binding of the isoproturon antibodies, no cross-reactivity effects were observed. Matrix effects were significant only in the case of wastewater samples. Biosensor measurements were validated using conventional liquid chromatography-mass spectrometry. The results obtained with both techniques were in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.