Abstract

We demonstrate a method for determining the dissociation density of N and H atoms present in a developing low temperature plasma, based on the emission and self-absorption of vacuum ultraviolet radiation produced from the plasma. Spark plasmas are produced via pulsed discharge in N2/H2 mixtures at atmospheric pressure, where information on the dissociated densities of the constituent gas molecules is desired without employing invasive diagnostic techniques. By analyzing the self-absorption line profile of 121.5 nm Lyman-α H radiation emitted within the first ∼1.0 mm of plasma near the anode tip, a peak dissociated H atom concentration of 5.6 × 1017 cm−3 was observed ∼100 ns into spark formation, with an estimated electron density of 2.65 × 1018 cm−3 determined from Stark broadening. Similarly, simultaneous line fitting of the N 120.0/124.3 nm emission profiles revealed a peak dissociated N atom concentration of 3.8 × 1017 cm−3 during the same discharge period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.