Abstract

<h3>Summary</h3> Magnetic field localization is based on the fact that the Earth’s magnetic field is distorted in the vicinity of ferromagnetic objects. When ferromagnetic objects are in fixed positions, the distortions are also fixed and, thus, contain location information. In our prior work, we proposed a simultaneous localization and calibration (SLAC) algorithm based on a Rao-Blackwellized particle filter that enables magnetic train localization using only uncalibrated magnetometer measurements. In this paper, a lower-complexity version of the SLAC algorithm is proposed that only estimates a subset of calibration parameters. An evaluation compares the full and reduced SLAC approach to a particle filter in which the magnetometer is pre-calibrated with a fixed set of parameters. The results show a clear advantage for both SLAC approaches and that the SLAC algorithm with a reduced set of calibration parameters achieves the same performance as the one with a full set of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.