Abstract

The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft.

Highlights

  • The skin is the primary barrier that protects the body from dehydration, mechanical trauma, and microbial insults, consisting of an outermost epidermis and appendages, being separated from the underlying dermis by a basement membrane [1]

  • Skin stem cells have been known for a long time, no current protocol is available to isolate more than one skin SC population at the same time

  • We have simultaneously isolated and characterized three stem cell populations of the dermis and epidermis from murine skin, utilizing a simple and practical protocol based on culture selection techniques

Read more

Summary

Introduction

The skin is the primary barrier that protects the body from dehydration, mechanical trauma, and microbial insults, consisting of an outermost epidermis and appendages, being separated from the underlying dermis by a basement membrane [1]. Interfollicular epidermal stem cells, named EpiSCs hereforth, rely on an underlying basement membrane which is rich in extracellular matrix proteins and growth factors. Basal cells attach to this structure through adhesion complexes such as hemidesmossomes containing a core of α6β4 integrins and focal adhesions of α3β1 integrins. These proteins play a role in growth control and migration [3]. The α6 and β1 integrins were taken as markers of epidermal stem cells

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.