Abstract
Multimodal instrumentation is a new technical approach allowing simultaneous and complementary in vivo recordings of complementary biological parameters. To elucidate further the physiopathological mechanisms in intact small animal models, especially for brain studies, a challenging issue is the actual coupling of magnetic resonance imaging (MRI) techniques with positron emission tomography (PET): it has been shown that running the technology for radioactive imaging in a magnet alters the spatiotemporal performance of both modalities. Thus, we propose an alternative coupling of techniques that uses the beta-MicroProbe instead of PET for local measurements of radioactivity coupled with MRI. We simultaneously recorded local radioactivity due to [(18)F]MPPF (a 5-HT(1A) receptor PET radiotracer) binding in the hippocampus with the beta-MicroProbe and carried out anatomical MRI in the same anaesthetised rat. The comparison of [(18)F]MPPF kinetics obtained from animals in a magnet with kinetics from a control group outside the magnet allowed us to determine the stability of tracer biokinetic measurements over time in the magnet. We were thus able to show that the beta-MicroProbe reliably measures radioactivity in rat brains under an intense magnetic field of 7 Tesla. The biological validation of a beta-MicroProbe/MRI dual system reported here opens up a wide range of future multimodal approaches for functional and pharmacological measurements by the probe combined with various magnetic resonance technologies, including anatomical MRI, functional MRI and MR spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Nuclear Medicine and Molecular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.