Abstract

A novel approach to simultaneous force and temperature measurement is proposed and demonstrated in this paper. The sensing element is based on a single long-period grating (LPG) formed by irradiating the joint of a microstructured optical fiber (MOF) and standard single mode fiber (SMF) with CO(2) laser pulses. The grating exhibits two groups of attenuation bands with distinctly different responses to temperature and force: the resonant notches in the MOF involving couplings between fundamental mode and core LP(11) modes are almost temperature insensitive but highly sensitive to force, while resonant notches in the SMF coming out of couplings between fundamental mode and cladding modes show high sensitivity to temperature but marginal sensitivity to force. Based on the LPG, a simple and efficient dual-parameter sensor simultaneously measuring temperature and force with a sensitivity of approximately 0.086 nm/degrees C and approximately -2.18 nm/N, respectively, is achieved. Furthermore, we propose a simple sensing configuration for simultaneous strain and temperature measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.