Abstract

This research aims to study the simultaneous extraction and transesterification of Chlorella vulgaris (C. vulgaris) using microwave irradiation with methanol as solvent and potassium hydroxide (KOH) as catalyst. The microwave-assisted insitu transesterification of C. vulgaris is assessed at various ratios of biomass-to-methanol, reaction times, and catalyst concentrations during the centrifugation and evaporation process. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to confirm fatty acid methyl ester (FAME) composition. Biodiesel preparation is carried out by simultaneous extraction and transesterification of microalgae from C. vulgaris. The product is then characterized using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR); microalgae are observed using scanning electron microscopy (SEM). The highest amount of FAME is obtained at a biomass-to-methanol ratio of 1:12, reaction time of 40 min, and catalyst concentration of 2 wt%. Biodiesel shows conversion to about 77.64% of methyl ester (methyl myristate, methyl palmitoleate, methyl linoleate, methyl oleate, methyl arachidonate, and methyl 5,8,11,14,17-eicosapentanoate).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.