Abstract
Mitochondrial NAD-dependent (IDH) and cytosolic NADP-dependent isocitrate dehydrogenases have been considered as candidates for the production of 2-oxoglutarate required by the glutamine synthetase/glutamate synthase cycle. The increase in IDH transcripts in leaf and root tissues, induced by nitrate or NH4+ resupply to short-term N-starved tobacco (Nicotiana tabacum) plants, suggested that this enzyme could play such a role. The leaf and root steady-state mRNA levels of citrate synthase, acotinase, IDH, and glutamine synthetase were found to respond similarly to nitrate, whereas those for cytosolic NADP-dependent isocitrate dehydrogenase and fumarase responded differently. This apparent coordination occurred only at the mRNA level, since activity and protein levels of certain corresponding enzymes were not altered. Roots and leaves were not affected to the same extent either by N starvation or nitrate addition, the roots showing smaller changes in N metabolite levels. After nitrate resupply, these organs showed different response kinetics with respect to mRNA and N metabolite levels, suggesting that under such conditions nitrate assimilation was preferentially carried out in the roots. The differential effects appeared to reflect the C/N status after N starvation, the response kinetics being associated with the nitrate assimilatory capacity of each organ, signaled either by nitrate status or by metabolite(s) associated with its metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.