Abstract

In utero electroporation is widely used to study neuronal development and function by introducing plasmid DNA into neural progenitors during embryogenesis. This is an effective and convenient method of introducing plasmid DNA into neural precursors and is suitable for manipulating gene expression in cells of the CNS. However, the applicability of this technique is comparatively limited to neuronal research, as the plasmid DNA introduced into neural progenitors during embryogenesis is diluted by cell proliferation and is not stably maintained in glial cells generated around and after birth. To overcome this limitation, we applied the Tol2 transposon system, which integrates a transgene into the genome of the host cell, to in utero electroporation. With this system, we confirmed that the transgene was effectively maintained in the progeny of embryonic neural precursors, astrocytes and oligodendrocytes. Using the glial promoters GFAP and S100β, targeted and stable expressions of transgenes in glia were obtained, which enabled the expression of different transgenes simultaneously in neurons and glia. Glia-targeted expression of the transgene that causes neuronal migration defect was achieved without the defect. Thus, use of the Tol2 transposon system in combination with in utero electroporation is a powerful method for studying glia-neuron interactions in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.