Abstract

We introduce envelopes for simultaneously reducing the predictors and the responses in multivariate linear regression, so the regression then depends only on estimated linear combinations of X and Y. We use a likelihood-based objective function for estimating envelopes and then propose algorithms for estimation of a simultaneous envelope as well as for basic Grassmann manifold optimization. The asymptotic properties of the resulting estimator are studied under normality and extended to general distributions. We also investigate likelihood ratio tests and information criteria for determining the simultaneous envelope dimensions. Simulation studies and real data examples show substantial gain over the classical methods, like partial least squares, canonical correlation analysis, and reduced-rank regression. This article has supplementary material available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.