Abstract

A novel and sensitive ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous enantioselective determination of flufiprole and its hydrolysis metabolite in paddy field ecosystem. The separation and determination were performed using reversed-phase chromatography on a novel cellulose chiral stationary phase, a Lux Cellulose-4 (150mm×2.0mm) column, under isocratic conditions at 0.25mL/min flow rate. The effects of other four different polysaccharide-based chiral stationary phases (CSPs) on the separation and simultaneous enantioseparation of the two target compounds were also evaluated. The elution orders of the eluting enantiomers were identified by an optical rotation detector. Modified QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the enrichment and cleanup of paddy water, rice straw, brown rice and paddy soil samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under the optimal conditions, the mean recoveries for all enantiomers from the above four sample matrix were ranged from 83.6% to 107%, with relative standard deviations (RSD) in the range of 1.0–5.8%. Coefficients of determination R2≥0.998 were achieved for each enantiomer in paddy water, rice straw, brown rice and paddy soil matrix calibration curves within the range of 5–500μg/kg. The limits of quantification (LOQ) for all stereoisomers in the above four matrices were all below 2.0μg/kg. The methodology was successfully applied for simultaneously enantioselective analysis of flufiprole enantiomers and their chiral metabolite in the real samples, indicating its efficacy in investigating the environmental stereochemistry of flufiprole in paddy field ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.