Abstract
We introduce the framework of cooperative simultaneous localization and tracking (CoSLAT), which provides a consistent combination of cooperative self-localization (CSL) and distributed target tracking (DTT) in sensor networks without a fusion center. CoSLAT extends simultaneous localization and tracking (SLAT) in that it uses also intersensor measurements. Starting from a factor graph formulation of the CoSLAT problem, we develop a particle-based, distributed message passing algorithm for CoSLAT that combines nonparametric belief propagation with the likelihood consensus scheme. The proposed CoSLAT algorithm improves on state-of-the-art CSL and DTT algorithms by exchanging probabilistic information between CSL and DTT. Simulation results demonstrate substantial improvements in both self-localization and tracking performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.