Abstract
Chloroanisoles, particularly 2,4,6-trichloroanisole, are commonly identified as major taste and odor compounds in water. In the present study, a simple and efficient method was established for the simultaneous determination of chloroanisoles and the precursor 2,4,6-trichlorophenol in water by using low-density-solvent-based simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography with electron capture detection. 2,4-Dichloroanisole, 2,6-dichloroanisole, 2,4,6-trichloroanisole, 2,3,4-trichloroanisole, and 2,3,6-trichloroanisole were the chloroanisoles evaluated. Several important parameters of the extraction-derivatization procedures, including the types and volumes of extraction solvent and disperser solvent, concentrations of derivatization agent and base, salt addition, extraction-derivatization time, and temperature were optimized. Under the optimized conditions (80 μL of isooctane as extraction solvent, 500μL of methanol as disperser solvent, 60 μL of acetic anhydride as derivatization agent, 0.75% of Na2 CO3 addition w/v, extraction-derivatization temperature of 25°C, without salt addition), a good linearity of the calibration curve was observed by the square of correlation coefficients (R(2) ) ranging from 0.9936 to 0.9992. Repeatability and reproducibility of the method were < 4.5% and <7.3%, respectively. Recovery rates ranged from 85.2 to 101.4%, and limits of detection ranged from 3.0 to 8.7 ng/L. The proposed method was applied successfully for the determination of chloroanisoles and 2,4,6-trichlorophenol in water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.