Abstract

A solid-phase extraction (SPE)–gas chromatography (GC)–mass spectrometry (MS) analytical method for the simultaneous separation and determination of endocrine disrupting chemicals (EDCs) from water samples is described in detail. Important and contrasting EDCs including estrone, 17β-estradiol, 17α-ethynylestradiol, 16α-hydroxyestrone, 4-nonylphenol, bisphenol A and 4- tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with bis (trimethylsilyl) trifluoroacetamide was used for the extraction recoveries of target compounds from water samples. A number of parameters that may affect the recovery of EDCs, such as the type of SPE cartridges, eluents, as well as water properties including pH value, and concentration of salts and humic substances were investigated. It is shown that the Oasis cartridges produced the best recoveries of target EDCs while ethyl acetate was efficient in eluting EDCs from SPE cartridges. The recovery of some EDCs was enhanced by the addition of salt, but reduced by the increase in pH value and humic acid concentration. The optimised method was further verified by performing spiking experiments in natural river water and seawater matrices, with good recovery and reproducibility for all the selected compounds. The established method was successfully applied to environmental water samples from East and West Sussex, UK, for the determination of the target EDCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.