Abstract

The co-existence of dyes, Cr(VI) and high concentration of salt in dyeing wastewater causes serious and complex environmental problems. In this study, a salt-tolerant strain Bacillus circulans BWL1061 was reported to simultaneously remove 50mg/L methyl orange and 50mg/L Cr(VI) under the anaerobic condition with 60g/L NaCl. During the decolorization process, the Cr(VI) reduction occurred preferentially over the dye decolorization due to the dominate utilization of electron by Cr(VI). The analysis of enzyme activities suggested that azoreductase, NADH-DCIP reductase, and laccase were associated with decolorization of methyl orange. A possible degradation pathway was proposed based on the metabolites analysis. The decolorization of methyl orange is involved in the symmetric cleavage of azo bond, which formed N,N-dimethyl p-phenylenediamine and 4-amino sulfonic acid, or the asymmetric cleavage of azo bond, which formed 4-(dimethylamino) phenol and 4-diazenylbenzene sulfonic acid. Phytotoxicity assays showed that strain BWL1061 could decrease the toxicity of methyl orange to Triticum aestivum, Pogostemon cablin and Isatis indigotica Fort during the decolorization process. In this study, Bacillus circulans is reported for the first time that could simultaneously remove azo dyes and Cr (VI) under high salt condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.