Abstract

Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. Care has to be taken in interpreting the images from ICCDs if quantitative results are required. In particular, nonuniform gain (flat field) and nonlinear response effects must be properly accounted for. Traditional flat-field corrections can only be applied in the linear regime of the ICCD camera, which limits the usable dynamic range. This paper reports a more general approach to image correction whereby the nonlinear gain response of each pixel of the ICCD is characterized over the full dynamic range of the camera. Image data can then be corrected for the combined effects of nonuniform gain and nonlinearity. The results from a two-color pyrometry measurement of soot field temperature are used to illustrate the capabilities of the new correction approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.