Abstract

We explore the ground state cooling and quantum synchronization of the mechanical and low-frequency inductor-capacitor (LC) resonators in a hybrid three-mode optoelectromechanical system, in which the mechanical resonator is optically and capacitively coupled to the optical cavity and the LC circuit, respectively. We find that when the bias voltage modulation switch is incorporated into the direct current (DC) bias voltage, ground state cooling and quantum synchronization can be simultaneously achieved regardless of whether the mechanical resonator and the low-frequency LC resonator have the identical frequency. Furthermore, we elucidate the relationship between quantum synchronization and ground state cooling of the two resonators, that is, the simultaneous ground state cooling of the resonators must be accompanied by quantum synchronization. Our work may open up an alternative approach to the simultaneous ground state cooling and quantum synchronization of multiple resonators, which has fewer parametric limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.