Abstract

Many industries are known to use heavy metals like chromium (Cr) to fix dyes in the fabrication processes and malachite green (MG) as colorant. Alkalinity, elevated temperature, or salinity of the industrial effluents makes conventional physicochemical removal of MG and hexavalent chromium [Cr(VI)] more difficult to apply and demands to perceive potential cost-effective and environment-friendly treatment methods to eliminate or convert them into less toxic compounds. Here, we report simultaneous removal and bioconversion of MG and Cr(VI) by a halophilic biofilm-forming bacterium Halomonas xianhensis SUR308. It can efficiently produce exopolysaccharides as extracellular polymeric substances (EPS) and form biofilm under oxygen limiting condition. The reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] is about 100%, and 95% after 84 h of growth in shaken and stagnant culture, respectively. The strain completely decolorizes MG after 48 h of growth in shaken culture. Furthermore, we found that strain SUR308 can efficiently detoxify chromium by reduction and degrades MG via producing various intermediate products simultaneously. Most interestingly, such conversions can also take place in alkaline environment and in environment where substantial amount of salt is present. These unique features of strain SUR308 make it suitable for the simultaneous remediation of toxic heavy metals and hazardous dye even from the environment having higher pH and salinity. The detail molecular mechanism of the bioconversion with its application in open environment would be the future research focus for bioprospecting strain SUR308.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.