Abstract

Continuous flow cell lysis by electroporation (EP), and cell and bead trapping by dielectrophoresis (DEP) have been demonstrated on a dielectrophoretic microfluidic chip. The results of lysing human white blood cells (WBC) and murine clonal cells (MN9D) by electroporation showed that lysis rates of up to 80% were achieved at 3 MHz and a flow rate of 30 μl/min. It was also shown that the lysis reactor can function as a dielelectrophoretic filter for trapping silica beads which selectively bind to DNA. The combination of cell lysis, DNA binding to beads, and bead separation assay in a single structure offers a step forward in the development of an efficient and compact system for fully automated microfluidic DNA sample preparation. The continuous flow protocol addresses major challenges faced in sample preparation such as lysate clogging, cell sedimentation, and cell agglomeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.