Abstract

ABSTRACTIn classical queueing systems, a customer is allowed to wait only in one queue to receive the service. In practice, when there exist a number of queues rendering the same service, some customers may tend to simultaneously take turn in more than one queue with the aim to receive the service sooner and thus reduce their waiting time. In this article, we introduce such a model and put forward a methodology to deal with the situation. In this regard, we consider two queues and assume that if a customer, who has turn in both queues, receives the service from one of the queues, the other turn is automatically withdrawn. This circumstance for the model brings about some abandonment in each queue as some customers receive the service from the other one. We study the customer’s waiting time in the mentioned model, which is defined as the minimum of waiting times in both queues and obtain probability density function of this random variable. Our approach to obtain probability density function of each of the waiting time random variables is to rely on the existing results for the abandonment case. We examine the situation for the cases of independence and dependence of the waiting time random variables. The latter is treated via a copula approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.