Abstract

A method is presented by which an azide-containing side chain can be introduced into any internal position of a polypeptide chain by in vitro translation. For this, 2'-deoxy-cytidylyl-(3'-->5')-adenosine was acylated on the 3'(2')-hydroxyl group of adenosine with 6-azido-2(S)-hydroxyhexanoic acid (AHHA), an alpha-hydroxy- and epsilon-azide derivative of L-lysine. The acylated dinucleotide was enzymatically ligated with a tRNA transcript to provide chemically stable E. coli suppressor AHHA-tRNA(Cys(CUA)). The esterase 2 gene from Alicyclobacillus acidocaldarius was modified by the amber stop codon (UAG) on position 118. Using AHHA-tRNA(Cys(CUA)) in an E. coli in vitro translation/transcription system, the site-directed introduction of an azide group linked to a backbone ester into the esterase polypeptide was achieved. The yield of the synthesized modified protein reached 80% compared to translation of the native esterase. Subsequently, azide coupling with an alkyne-modified oligodeoxynucleotide demonstrated the feasibility of this approach for conjugation of polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.