Abstract
FeMoSx/TiO2 was investigated as a regenerable sorbent to simultaneously adsorb Hg0 and Hg(II) from coal-fired flue gas for the centralized control of Hg pollution discharged from coal-fired power plants. The performance of FeMoSx/TiO2 for Hg(II) and/or Hg0 adsorption was evaluated on a fixed-bed reactor at 80 oC, and the mutual interference between Hg0 adsorption and Hg(II) adsorption was analyzed using individual adsorption, simultaneous adsorption, and two-stage adsorption. FeMoSx/TiO2 displayed an excellent capacity for individual Hg0 adsorption (41.8 mg g-1) and a moderate capacity for individual Hg(II) adsorption (0.48 mg g-1). Two types of adsorption sites were present on FeMoSx/TiO2 for gaseous Hg adsorption (S0 and FeS2/MoS3 sites). X-ray photoelectron spectroscope and kinetic analyses demonstrated that Hg0 and Hg(II) could adsorb onto S0 sites, whereas only Hg0 was adsorbed onto FeS2/MoS3 sites. As Hg0 competed with Hg(II) for the S0 sites, the amount of Hg(II) adsorbed slightly decreased by 16% in the presence of Hg0. However, Hg0 adsorption onto the FeS2/MoS3 sites predominated over the Hg0 adsorption onto FeMoSx/TiO2 and it was not inhibited in the presence of Hg(II). Therefore, the amount of Hg0 adsorbed on FeMoSx/TiO2 was only decreased by 2% in the presence of Hg(II).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.