Abstract

Using a full-wave acoustic model, Monte Carlo numerical studies of intensity fluctuations in a realistic shallow water environment that simulates the Straits of Florida, including internal wave fluctuations and bottom roughness, have been performed. Results show that the sound intensity at distant receivers scintillates dramatically. The acoustic scintillation index SI increases rapidly with propagation range and is significantly greater than unity at ranges beyond about 10 km. This result supports a theoretical prediction by one of the authors. Statistical analyses show that the distribution of intensity of the random wave field saturates to the expected Rayleigh distribution with SI= 1 at short range due to multipath interference effects, and then SI continues to increase to large values. This effect, which is denoted supersaturation, is universal at long ranges in waveguides having lossy boundaries (where there is differential mode attenuation). The intensity distribution approaches a log-normal distribution to an excellent approximation; it may not be a universal distribution and comparison is also made to a K distribution. The long tails of the log-normal distribution cause "acoustic intermittency" in which very high, but rare, intensities occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.