Abstract

Simulations from our newly expanded ring current‐atmosphere interactions model with self‐consistent magnetic field (RAM‐SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high‐energy (>50 keV) ion flux; however, it underestimates the low‐energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high‐resolution convection model. In agreement with Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations, RAM‐SCB indicates that the large‐scale magnetic field is depressed as close as ∼4.5 RE during even a moderate storm. Regions of electromagnetic ion cyclotron instability are predicted on the duskside from ∼6 to ∼9 RE, indicating that previous studies confined to geosynchronous orbit may have underestimated their scattering effect on the energetic particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.