Abstract

SPECT imaging of the dopamine transporter (DAT) is used for diagnosis and monitoring progression of Parkinson's Disease (PD), and differentiation of PD from other neurological disorders. The diagnosis is based on the DAT binding in the caudate and putamen structures in the striatum. We previously proposed a relatively inexpensive method to improve the detection and quantification of these structures for dual-head SPECT by replacing one of the fan-beam collimators with a specially designed multi-pinhole (MPH) collimator. In this work, we developed a realistic model of the proposed MPH system using the GATE simulation package and verified the geometry with an analytic simulator. Point source projections from these simulations closely matched confirming the accuracy of the pinhole geometries. The reconstruction of a hot-rod phantom showed that 4.8 mm resolution is achievable. The reconstructions of the XCAT brain phantom showed clear separation of the putamen and caudate, which is expected to improve the quantification of DAT imaging and PD diagnosis. Using this GATE model, point spread functions modeling physical factors will be generated for use in reconstruction. Also, further improvements in geometry are being investigated to increase the sensitivity of this base system while maintaining a target spatial resolution of 4.5-5 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.