Abstract

Beams in which space charge forces are stronger than the force from thermal pressure are nonneutral plasmas, since particles interact mostly via the long-range collective potential. An ever-increasing number of applications demand such high-brightness beams. The University of Maryland Electron Ring [P. G. O’Shea et al., Nucl. Instrum Methods Phys. Res. A 464, 646 (2001)], currently under construction, is designed for studying the physics of space-charge-dominated beams. Indirect ways of measuring beam emittance near the UMER source produced conflicting results, which were resolved only when a direct measurement of phase space indicated a hollow velocity distribution. Comparison to self-consistent simulation using the particle-in-cell code WARP [D. P. Grote et al., Fusion Eng. Design 32-33, 193 (1996)] revealed sensitivity to the initial velocity distribution. Since the beam is born with nonuniformities and granularity, dissipation mechanisms and rates are of interest. Simulations found that phase mixing by means of chaotic particle orbits is possible in certain situations, and proceeds much faster than Landau damping. The implications for using beams to model other N-body systems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.