Abstract
The application of multiple imputation (MI) techniques as a preliminary step to handle missing values in data analysis is well established. The MI method can be classified into two broad classes, the joint modeling and the fully conditional specification approaches. Their relative performance for the longitudinal ordinal data setting under the missing at random (MAR) assumption is not well documented. This article intends to fill this gap by conducting a large simulation study on the estimation of the parameters of a longitudinal proportional odds model. The two MI methods are also illustrated in quality of life data from a cancer clinical trial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.