Abstract

Variable Topology Truss (VTT) is a modular robotic system, which is an extended robot concept based on the Variable Geometry Truss (VGT). It is composed of modular members and nodes and can operate in a rough and cluttered environment. By changing the length of each member, the VTT robot can change size and shape. The VTT can also perform locomotion by rolling. Travel over a long distance can be accomplished by repeating the rolling motion, so a motion primitive is used. This reduces the computational work because the repetitive motion only needs to be calculated once. In this paper, an algorithm is presented to derive a motion primitive for an octahedral VTT. The algorithm consists of three phases: placing one node on the ground, moving the center of mass, and returning to the initial shape. On each time step, a set of possible robot motions is evaluated based on a cost function. The lowest cost motion is selected on each time step to form the optimized motion primitive. The resulting motion primitive is analyzed and validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.