Abstract

Wire Arc Additive Manufacturing is a metal 3-D printing technology that is a highly versatile and rapidly growing means of producing complex components by depositing metal layer-by-layer, melting them with an electric arc. Predicting the residual stress induced is of cardinal importance as components need to be analyzed during the design phase with considerations given to residual stresses to be effective. One of the critical parameters determining the residual stress of the structure in the process is the deposition pattern. In this study, finite element method in Simufact Welding 6.0 is employed to compare the different path-planning deposition strategies of the Wire Arc Additive Manufacturing process to understand how the dynamic temperature evolution can cause notable differences in distortion and residual stresses. The results show that the strategy that has the least chance of non-uniform cooling will have the least residual stresses, and the paths in which fewer longitudinal beads are exposed to the edges will tend to distort the least.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.