Abstract

PurposeThis study aims to numerically study the forced convection effects on a two-dimensional microchannel filled with a porous material containing the water/FMWCNT nanofluid. The upper and lower microchannel walls were fully insulated thermally along 15 per cent of their lengths at each end of the microchannel, with the in-between length being exposed to a constant temperature. The slip velocity boundary condition was applied along the microchannel walls.Design/methodology/approachThe Navier–Stokes equations were discretized before being solved numerically via a FORTRAN computer code. The following ranges were considered for the studied parameters: slip factor (B) equal to 0.001, 0.01 and 0.1; Reynolds number (Re) between 10 and 100; solid nanoparticle mass fraction (ϕ) between 0.0012 and 0.0025; Darcy number (Da) between 0.001 and 0.1; and porosity factor (ε) between 0.4 and 0.9.FindingsIncreasing the Da caused a greater increase in the velocity profile than increasing Re, whereas increasing porosity did not affect the velocity profile growth at all.Originality/valueThis paper is the continuation of the authors’ previous studies. Using the water/FMWCNT nanofluid as the working fluid in microchannels is among the achievements of this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.