Abstract
The turbulent flow and heat transfer in triangular rod bundles are investigated theoretically with CFD code FLUENT. The unsteady Reynolds Stress Model is adopted as turbulence modeling. The wall function is used for near wall boundary layer. The calculation results were in agreement with experimental data. The effects of the Reynolds number and pitch to diameter ratio on the flow and heat transfer in the lattice are significant. The traditional theoretical models could not predict the flow and heat transfer in the lattice. The P/D = 1.03 is a critical point. In this case, the flow and heat transfer in the lattice is the most desirable and most efficient, and the nuclear power could also reach its maximum. The variation of large scale coherent structure with pitch to diameter ratio is consistent with the variation of the Nusselt number with pitch to diameter ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.